Базы данныхИнтернетКомпьютерыОперационные системыПрограммированиеСетиСвязьРазное
Поиск по сайту:
Подпишись на рассылку:

Назад в раздел

Деревья в SQL.

Деревья в SQL
Деревья в SQL. Часть 1.

Дерево - специальный вид направленного графа. Графы - структуры данных, состоящие из узлов связанных дугами. Кажая дуга показывает однонаправленную связь между двумя узлами. В организационной диаграмме, узлы - сотрудники, а каждая дуга описывает подчинения. В перечне материалов, узлы - модули (в конечном счете, показываемые до индивидуальных частей), и дуги описывают отношение "сделан из".

Вершина дерева называется корнем. В организационной диаграмме, это самый большой начальник; в перечне материалов, это собранная деталь. Двоичное дерево - это дерево, в котором узел может иметь не более двух потомков; В общем случае, n-мерное дерево - то, в котором узел может иметь не больше чем n узлов - потомков.

Узлы дерева, которые не имеют поддеревьев, называются листьями. В перечне материалов, это - минимальные части, на которые может быть разобрана деталь. Потомки, или дети, родительского узла - все узлы в поддереве, имееющего родительский узел коренем.

Деревья часто изображаются как диаграммы. (См. рисунок 1) Другой путь представления деревьев состоит в том, чтобы показывать их как вложенные множества (см. рисунок 2); Это основа для используемого мной представления деревьев в SQL в виде вложенных множеств.

В SQL, любые отношения явно явно описываются данными.. Типичный способ представления деревьев состоит в том, чтобы поместить матрицу смежности в таблицу. Т.е. один столбец - родительский узел, и другой столбец в той же самой строке - дочерний узел (пара представляет собой дугу в графе). Например, рассмотрим организационную диаграмму компании с шестью сотрудниками:

CREATE TABLE Personnel( emp CHAR(20) PRIMARY KEY, boss CHAR(20) REFERENCES Personnel(emp), salary DECIMAL(6,2) NOT NULL ); Personnel: emp boss salary ========================== 'Jerry' NULL 1000.00 'Bert' 'Jerry' 900.00 'Chuck' 'Jerry' 900.00 'Donna' 'Chuck' 800.00 'Eddie' 'Chuck' 700.00 'Fred' 'Chuck' 600.00

Эта модель имеет преимущества и недостатки. ПЕРВИЧНЫЙ КЛЮЧ - emp, но столбец boss - функционально зависит от него, следовательно мы имеем проблемы с нормализацией. REFERENCES не даст вам возможность указать начальником, того кто не является сотрудником. Однако, что произойдет, когда 'Jerry' изменяет имя на 'Geraldo', чтобы получить телевизионное ток-шоу? Вы также должны сделать каскадные изменения в строках 'Bert' и 'Chuck'.

Другой недостаток этой модели - то трудно вывести путь. Чтобы найти имя босса для каждого служащего, используется самообъединяющийся запрос, типа:

SELECT B1.emp, 'bosses', E1.emp FROM Personnel AS B1, Personnel AS E1 WHERE B1.emp = E1.boss;

Но кое-что здесь отсутствует. Этот запрос дает Вам только непосредственных начальников персонала. Босс Вашего босса также имеет власть по отношению к Вам, и так далее вверх по дереву. Чтобы вывести два уровня в дереве, Вам необходимо написать более сложный запрос самообъединения, типа:

SELECT B1.emp, 'bosses', E2.emp FROM Personnel AS B1, Personnel AS E1, Personnel AS E2 WHERE B1.emp = E1.boss AND E1.emp = E2.boss;

Чтобы идти более чем на два уровня глубже в дереве, просто расширяют образец:

SELECT B1.emp, 'bosses', E3.emp FROM Personnel AS B1, Personnel AS E1, Personnel AS E2, Personnel AS E3 WHERE B1.emp = E1.boss AND E1.emp = E2.boss AND E2.emp = E3.boss;

К сожалению, Вы понятия не имеете насколько глубоко дерево, так что Вы должны продолжать расширять этот запрос, пока Вы не получите в результате пустое множество.

Листья не имеют потомков. В этой модели, их довольно просто найти: Это сотрудники, не являющиеся боссом кому либо еще в компании:

SELECT * FROM Personnel AS E1 WHERE NOT EXISTS( SELECT * FROM Personnel AS E2 WHERE E1.emp = E2.boss);

У корня дерева boss - NULL:

SELECT * FROM Personnel WHERE boss IS NULL;

Реальные проблемы возникают при попытке вычислить значения вверх и вниз по дереву. Как упражнение, напишите запрос, суммирующий жалованье каждого служащего и его/ее подчиненных; результат:

Total Salaries emp boss salary ========================== 'Jerry' NULL 4900.00 'Bert' 'Jerry' 900.00 'Chuck' 'Jerry' 3000.00 'Donna' 'Chuck' 800.00 'Eddie' 'Chuck' 700.00 'Fred' 'Chuck' 600.00 Множественная модель деревьев.

Другой путь представления деревьев состоит в том, чтобы показать их как вложенные множества. Это более подходящая модель, т.к. SQL - язык, ориентированный на множества. Корень дерева - множество, содержащее все другие множества, и отношения предок-потомок описываются принадлежностью множества потомков множеству предка.

Имеются несколько способов преобразования организационной диаграммы во вложенные наборы. Один путь состоит в том, чтобы вообразить, что Вы перемещаете подчиненные "овалы" внутри их родителей, использующих линии края как веревки. Корень - самый большой овал и содержит все другие узлы. Листья - самые внутренние овалы, ничего внутри не содержащие, и вложение соответствует иерархическим отношениям. Это - естественное представление модели "перечень материалов", потому что заключительный блок сделан физически из вложенных составляющих, и разбирается на отдельные части.

Другой подход состоит в том, чтобы представить небольшой червь, ползающий по "узлам и дугам" дерева. Червь начинает сверху, с кореня, и делает полную поездку вокруг дерева.

Но теперь давайте представим более сильный червь со счетчиком, который начинается с единицы. Когда червь прибывает в узел, он помещает число в ячейку со стороны, которую он посетил и увеличивает счетчик. Каждый узел получит два номера, одино для правой стороны и одино для левой стороны.

Это дает предсказуемые результаты, которые Вы можете использовать для формирования запросов. Таблица Personnel имеет следующий вид, с левыми и правыми номерами в виде:

CREATE TABLE Personnel( emp CHAR(10) PRIMARY KEY, salary DECIMAL(6,2) NOT NULL, left INTEGER NOT NULL, right INTEGER NOT NULL); Personnel emp salary left right ============================== 'Jerry' 1000.00 1 12 'Bert' 900.00 2 3 'Chuck' 900.00 4 11 'Donna' 800.00 5 6 'Eddie' 700.00 7 8 'Fred' 600.00 9 10

Корень всегда имеет 1 в левом столбце и удвоенное число узлов (2*n) в правом столбце. Это просто понять: червь должен посетить каждый узел дважды, один раз с левой стороны и один раз с правой стороны, так что заключительный количество должено быть удвоенное число узлов во всем дереве.

В модели вложенных множеств, разность между левыми и правыми значениями листьев - всегда 1. Представте червя, поворачивающегся вокруг листа, пока он ползет по дереву. Поэтому, Вы можете найти все листья следующим простым запросом:

SELECT * FROM Personnel WHERE (right - left) = 1;

Вы можете использовать такую уловку, для ускорения запросов: постройте уникальный индекс по левому столбцу, затем перепишите запрос, чтобы воспользоваться преимуществом индекса:

SELECT * FROM Personnel WHERE left = (right - 1);

Причина увеличения производительности в том, что SQL может использовать индекс по левому столбцеу, когда он не испорльзуется в выражении. Не используйте (left - right) = 1, потому что это дает воспользоваться преимуществами индекса.

В модели вложенных - имножеств, пути показываются как вложенные множества, которые представлены номерами вложенных множеств и предикатами BETWEEN. Например, чтобы определить всех боссов определенного сотрудника необходимо написать:

SELECT :myworker, B1.emp, (right - left) AS height FROM Personnel AS B1, Personnel AS E1 WHERE E1.left BETWEEN B1.left AND B1.right AND E1.right BETWEEN B1.left AND B1.right AND E1.emp = :myworker;

Чем больше height, тем дальше по иерархии босс от служащего. Модель вложенных множеств использует факт, что каждое содержащее другие множество является большим в размере (где размер = (right - left)) чем множества, в нем содержащиеся. Очевидно, корень будет всегда иметь самый большой размер.

Уровень, число дуг между двумя данными узлами, довольно просто вычислить. Например, чтобы найти уровни между заданным рабочим и менеджером, Вы могли бы использовть:

SELECT E1.emp, B1.emp, COUNT(*) - 1 AS levels FROM Personnel AS B1, Personnel AS E1 WHERE E1.left BETWEEN B1.left AND B1.right AND E1.right BETWEEN B1.left AND B1.right AND E1.node = :myworker AND B1.node = :mymanager;

(COUNT(*) - 1) используется для того, чтобы удалить двойной индекс узла непосредственно как нахождение на другом уровне, потому что узел - нулевые уровни, удаленные из себя.

Вы можете построить другие запросы из этого шаблона. Например, чтобы найти общих боссов двух служащих, объединяют пути и находят узлы который имеют (COUNT(*) > 1). Чтобы найти самых близких общих предков двух узлов, объединяют пути, находят узлы, которые имеют (COUNT(*) > 1), и выбирают с наименьшей глубиной.

Рисунок 1.
Вершина дерева называется корнем. Узлы дерева, которые не имеют поддеревьев, называются листьями. Потомки родительского узла - узлы в поддервья, имеющие корнем родительский узел.
Рисунок 2.
Другой путь представления деревьев состоит в том, чтобы показать их как вложенные множества. Это более подходящая модель, т.к. SQL - язык, ориентированный на множества. Корень дерева - множество, содержащее все другие множества, и отношения предок-потомок описываются принадлежностью множества потомков множеству предка.

© Joe Celko
DBMS Online - March 1996
Translated by SDM

Множественная модель деревьев. Часть 2.

Я предполагаю, что Вы имеете перед собой статью за март 1996, так что я не буду повторяться. Множественная модель деревьев имеет некоторые свойства, которые я не упоминал в прошлом месяце. Но сначала, давайте создадим таблицу (см. Листинг 1) для хранения информации о персонале. Я буду повсюду обращаться к этой таблице в остальной части этой статьи.

Дерево на рисунке 1 представлено как A) граф и Б) вложенные множества. Направление показываетя вложением, то есть Вы знаете, что кто-то - подчиненный кого-то еще в иерархии компании, если что левые и правые номера множества этого человека- между таковыми их боссов.

Другое свойство, которое я не упоминал в последний раз - то, что потомки- упорядоченны, т.е. Вы можете использовать номера элементов множества, чтобы упорядочить потомков. Это свойство отсутствует в модели матрицы смежности, которая не имеет никакого упорядочения среди потомков. Вы можете использовать этот факт при вставке, обновлении, или удалении узлов в дереве.

Одним из свойств дерева является то, что оно является графом без циклов. То есть никакой путь не замыкается, чтобы поймать Вас в бесконечной петле, когда Вы следуете им в дереве. Другое свойство- то, что всегда имеется путь от корня до любого другого узла в дереве. В модели вложенноых множеств, пути показываются как вложенные множества, которые представлены номерами множеств и предикатами BETWEEN. Например, чтобы выяснить всех менеджеров, которым должен отчитываться рабочий, вы можете написать:

SELECT 'Mary', P1.emp, (P1.rgt - P1.lft) AS size FROM Personnel AS P1, Personnel AS P2 WHERE P2.emp = 'Mary' AND P2.lft BETWEEN P1.lft AND P1.rgt; Mary emp size ==== === ==== Mary Albert 27 Mary Charles 13 Mary Fred 9 Mary Jim 5 Mary Mary 1

Заметьте, что, когда size = 1, Вы имеете дело С Мэри как с ее собственным боссом. Вы можете исключить этот случай.

Модель вложенная множеств использует факт, что каждый вешний набор имеет больший size (size = right - left) чем множества, которые оно содержит. Очевидно, корень будет всегда иметь самый большой size. JOIN и ORDER BY не нужны в модели вложенных множеств, как модели графа смежности. Плюс, результаты не зависят от порядка, в котором отображаются строки.

Уровень узла - число дуг между узлом и корнем. Вы можете вычислять уровень узла следующим запросом:

SELECT P2.emp, COUNT(*) AS level FROM Personnel AS P1, Personnel AS P2 WHERE P2.lft BETWEEN P1.lft AS P2 GROUP BY P2.emp; Этот запрос находит уровни среди менеджеров, следующим образом: emp level === ===== Albert 1 Bert 2 Charles 2 Diane 2 Edward 3 Fred 3 George 3 Heidi 3 Igor 4 Jim 4 Kathy 4 Larry 4 Mary 5 Ned 5

В некоторых книгах по теории графов, корень имеет нулевой уровнь вместо первого. Если Вам нравится это соглашение, используйте выражение "(COUNT(*)-1)".

Самообъединения в комбинации с предикатом BETWEEN- основной шаблон для других запросов.

Агрегатные функции в деревьях.

Получение простой суммы зарплаты подчиненных менеджера работает на том же самом принципе. Заметьте, что эта общая сумма будет также включать зарплату босса:

SELECT P1.emp, SUM(P2.salary) AS payroll FROM Personnel AS P1, Personnel AS P2 WHERE P2.lft BETWEEN P1.lft AND P1.rgt GROUP BY P1.emp; emp payroll === ======= Albert 7800.00 Bert 1650.00 Charles 3250.00 Diane 1900.00 Edward 750.00 Fred 1600.00 George 750.00 Heidi 1000.00 Igor 500.00 Jim 300.00 Kathy 100.00 Larry 100.00 Mary 100.00 Ned 100.00

Следующий запрос будет брать уволенного служащего как параметр и удалять поддерево, расположенное под ним/ней. Уловка в этом запросе - то, что Вы используете ключ, но Вы должны заставить работать левые и правые значения. Ответ - набор скалярных подзапросов:

DELETE FROM Personnel WHERE lft BETWEEN (SELECT lft FROM Personnel WHERE emp = :downsized) AND (SELECT rgt FROM Personnel WHERE emp = :downsized);

Проблема состоит в том, что после этого запроса появляются промежутки в последовательности номеров множеств. Это не мешает выполнять большинство запросов к дереву, т.к. свойство вложения сохранено. Это означает, что Вы можете использовать предикат BETWEEN в ваших запросах, но другие операции, которые зависят от плотности номеров, не будут работать в дереве с промежутками. Например, Вы не сможете находить листья, используя предикат (right-left=1), и не сможете найти число узлов в поддереве, используя значения left и right его корня.

К сожалению, Вы потеряли информацию, которая будет очень полезна в закрытии тех промежутков - а именно правильные и левые номера корня поддерева. Поэтому, забудьте запрос, и напишите вместо этого процедуру:

CREATE PROCEDURE DropTree (downsized IN CHAR(10) NOT NULL) BEGIN ATOMIC DECLARE dropemp CHAR(10) NOT NULL; DECLARE droplft INTEGER NOT NULL; DECLARE droprgt INTEGER NOT NULL; --Теперь сохраним данные поддерева: SELECT emp, lft, rgt INTO dropemp, droplft, droprgt FROM Personnel WHERE emp = downsized; --Удаление, это просто... DELETE FROM Personnel WHERE lft BETWEEN droplft and droprgt; --Теперь уплотняем промежутки: UPDATE Personnel SET lft = CASE WHEN lft > droplf THEN lft - (droprgt - droplft + 1) ELSE lft END, rgt = CASE WHEN rgt > droplft THEN rgt - (droprgt - droplft + 1) ELSE rgt END;END;

Реальная процедура должна иметь обработку ошибок, но я оставляю это как упражнение для читателя.



  • Главная
  • Новости
  • Новинки
  • Скрипты
  • Форум
  • Ссылки
  • О сайте

  • пластика лица перейти на сайт .
    lantanclinic.ru



    Emanual.ru – это сайт, посвящённый всем значимым событиям в IT-индустрии: новейшие разработки, уникальные методы и горячие новости! Тонны информации, полезной как для обычных пользователей, так и для самых продвинутых программистов! Интересные обсуждения на актуальные темы и огромная аудитория, которая может быть интересна широкому кругу рекламодателей. У нас вы узнаете всё о компьютерах, базах данных, операционных системах, сетях, инфраструктурах, связях и программированию на популярных языках!
     Copyright © 2001-2020
    Реклама на сайте